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Normal mode math

IVZE - AM| =0 (1)

V2 E := the Hessian, matrix of second derivatives w.r.t. time
M := diagonal mass matrix of macromolecule

IM-Y2(V2E)M 2 — M| = 0 @

A = eigenvalues proportional to the squares of the vibrational frequencies

[M]{#} + [K]{z} = {0} (3)
[M] := mass matrix of macromolecule
[I] := stiffness matrix; second derivatives of potential energy of molecule
{x} = displacement vectors of all atoms from their equil. positions
{4} = second derivatives w.r.t. time
Let {x} = {y sin(wf) }; y are normal mode variables, w are circular frequency
variables.

{[K] - w?[M]}{x} =0 €

Solving Eq. (4) yields natural frequencies and corresponding normal mode
vectors. The harmonic dynamics of macromolecular system are fully described
thus.

Approximate potential energy function by harmonic modes around minimum
energy conformation. By diagonalizing the Hessian matrix of mass-weighted sec-
ond derivatives of the potential energy arrive at analytical solution to equations of
motion.

Eigenvectors are the normal modes; eigenvalues are the squares of the associ-

ated frequencies.
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Harmonic approximation

* Def: Harmonic Approximation: Assumes
that potential energy function can be
approximated as sum of quadratic terms in
displacements.

» Coefficients of these terms are:
— 1) Force constant matrix &
— 2) Atomic masses.

« Matrix equation of molecular vibrational
modes

(B. Brooks & M. Karplus, J Comp Chem, 1995,

Harmonic Analysis of Large Systems. |. Methodology) °
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Energy function contributions, efc.

« Types of contributions to energy functions found in
Hessian matrix:
— 1) Diagonal interaction (atom with self)
— 2) Close interactions (atom connected by bond or angle term)
— 3) Long-range interactions (VdW and EM)

— 4) Additional close-range interactions with assoc. long-range
term (1-4 dihedrals and H-bonding)

— 5) Zero interactions (atom pairs beyond long-range cutoffs)

« For any pair interaction, up to 9 contributions to the
second derivative matrlx (dx;,dy;,dz; with any of dx;, dy;,
dz;), however, can calculate all é from two magnltudes

and two angles defining direction. ~ JE/0r and 9°E/0r*

« Matrix-specific methods
— Gram-Schmidt, tridiagonalization, etc.
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Large systems techniques

HARMONIC ANALYSIS OF LARGE SYSTEMS

‘ Xray structure of BPTI ‘
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Memory requirements

« Matrix storage size:
set of basis vectors,
size M x 3N, N is

number of atoms. M e leul.pdb calcium ATPase:
, = (50 modes) x 3(7672 atoms)

IS number of modes. ~ 1 150 800 elements

e Double-precision floating
point uses 8 bytes

e 8 * 276 192 = 9 206 400
bytes

Molecular Simulations Group (Hinsen’ 1998’ PrOteinS) 6



http://dasher.wustl.edu/tinker/

Tinker's vibrate.f —
Hessian memory requirements
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Do you love statically-allocated Fortran programs as much as | do?
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Tinker's vibrate.f — heme.xyz
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Tinker's vibrate.f — peptide.xyz
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Interpretation of low and high
frequencies

* 1) Global domain motions have no energy
contribution from internal degrees of freedom of
the domains because there is no deformation.

« 2) Long-range interactions between domains are
weaker than short-range interactions between
neighboring atoms.

« -> High-frequency modes are localized motions
iInvolving few atoms

« -> | ow-frequency modes represent global
movements of large domains

Molecular Simulations Group (Hinsen’ 1 998’ PrOteinS) 10



1EUL.pdb Ca“*ATPase
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Tinker’s vibrate.f - implementation

« () establish potential « 5) diagonalize to get
force field parameters vibrational frequencies

+ 1) calculate the Hessian and normal modes
matrix of second « 6) form Cartesian
derivatives coordinate displacements

* 2) store upper triangle of from normal modes
the Hessian in "matrix" « 7) print the vibrational

« 3) perform frequency and normal
diagonalization to get mode

Hessian eigenvalues

« 4) store upper triangle of
the mass-weighted
Hessian matrix

Molecular Simulations Group 12
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Subspace methods and
free energy and entropic effects

Constrain degrees of freedom: backbone
dihedral angles ¢ and ; Fourier basis
space

Basis vectors of the subspace are not
coordinates but coordinate differentials—
each basis vector describes a direction in
3N-dimensional coordinate space. Basis
vector regarded as set of atomic
displacement vectors.

d, = D(R,), (1)

where R, is the position of atom i and d; is its
displacement vector. Obviously, there is more than
one vector field D(r) corresponding to a given set of
displacement vectors d;, although the inverse rela-
tion is unique. Because the vector field D(r) has no

A precise specification of this normal mode sub-
space basis is given by the vector fields

BY(r) = wix, k7 )w(y , k") wiz, k)e,  (2)

where e, a = x, y, zis a unit vector along one of the
three Cartesian axes and

sin (kx) for k=<0

wix, k) = cos (kx) for k= 0. 3)

Comparison to free energy
results:

“Moreover, the fact that the simplified protein

model is able to reproduce the low-frequency modes

of large proteins rather well explains why normal

mode analysis, despite its exploration of only a single
local energy minimum of the configurational space of
the system, can make meaningful predictions for the
system in its real physiological environment. Such
environments have temperatures at which entropic
effects are not negligible, and hence the relevance of
studying minima of potential energy is questionable.
Instead, the free energy as a function of slow variables
should be analyzed. As explained in this article,

the simplified protein model can in fact be

regarded as a crude approximation to the free energy
as a function of residue positions. Because such a
model produces essentially the same low-frequency
motions as an atomic model with a potential energy
surface, it can be concluded that the neglect of
entropic effects in standard normal mode analysis
has no important consequences as far as domain
motions are concerned.” (Hinsen, 1998, Proteins)
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Local minima of potential energy

“The implication of these observations for the
energy landscape of proteins is that the multiple
local minima of the potential energy in the
subspace of low-frequency motions and the
corresponding smoothed-out minima of the free
energy profile must have similar shape. This
shape is essentially determined by the condition
that deformations should be limited to small
regions and/or regions with a low atom density,
because a low atom density implies a lower
energetic cost of deformations.” (Hinsen, 1998,
Proteins)

Molecular Simulations Group
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Quantized elastic deformational
model (QEDM)

« Allows calculate normal modes based on low-resolution (20--30 A) cryo-EM
density maps without atomic coordinates or amino acid sequence.

 Ma: “The success of the initial study of QEDM-assisted refinement
procedure demonstrates the potential of improving the resolution of the final
reconstruction in single-particle cryo-EM by dividing the particle images into
more homogeneous particle subsets in terms of molecular conformations.”

* Substructure synthesis method (SSM): determine modes at very long length
scales; determine substructure modes; link substructures together; enforce
geometric compatibility at interfaces of neighboring structures; eigenvalue
problem on smaller substructures

* As harmonic approximation, presumably cannot overcome energy barrier
separating two states—how reveal trajectories of motion?

Jianpeng Ma (2004). New Advances in Normal Mode Analysis of
Molecular Simulations Group Supermolecular Complexes and Applications to Structural 15
Refinement. Curr. Prot. Pept. Sci. 5: 119-123



Quantized elastic deformational
model (QEDM) (p2)

« Fatty Acid Synthase (FAS) —
application of QEDM to a 19 A
cryo-EM density map,
revealing deformational modes. ,,
« Using multi-copy x-ray LALELEER S 36
crystallographic refinement, a  iazcanca W :
simultaneous multi-reference ”
refinement in presence of b
structural variations in cryo-EM [ fooees
images was performed using e W
QEDM-predicted conformers. =
(Brink & Ma, Structure, 2004)
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Simplified elastic network model

“What is the predictive power of the method?
In an attempt to characterize more fully the

lowest frequency normal modes, the following (Delarue, 2002, Simplified
approach has been followed: each residue is Normal Mode Analysis of
scanned in turn and its associated mass is Conformational
increased by a factor of 100 compared to the other Transitions in DNA-
residues. Then, the shift in the frequency of each dependent Polymerases:

of the ten lowest modes is recorded. In this manner, the Elastic Network Model
residues whose mass contributes most to these low J Mol Biol)

frequency modes are highlighted and a residue-by-

residue “signature” is being built for each of the ten

lowest frequency normal modes. In general, we find that

for hinge motions of loosely connected domains, the

residues that matter most are the ones at the tip of the

distal domains.”

Molecular Simulations Group 17



Some timings with simplified model

TABLE VIL CPU Time Required for the Cal culation of 50 Normal Modes on a HP Workstation, Using RTE With One
Residue per Block, or the Standard Method Available in CHARMM for Large Matrices, Namely, DIMB!

Standard method ETE method
Protein Mlatrix 2ize DIME (roim) Projection ( min) Matrix size DIAGO* (min) Total (mim)
HIV-1 protease 2,766 30 0.5 504 0.9 15
Triglyceride lipase 7,491 515 3.6 1,590 14 176

*Mote that DIME yield exact normal modes.
*The projected matrix was diagonalized with the DIAGE routine found in the VIBEAN module of CHARRMDM.

F. Tama et al. (2000). Building blocks approach for
determining low-frequency normal modes in

Molecular Simulations Group macromolecules. Proteins 41, 1-7. 18



Langevin modes in
macromolecules background

* Langevin egns solved in terms of Langevin
modes; Newton’s eqgns solved in terms of
normal modes ey sF

dt

* Langevin modes: Recall the Langevin egns.

aN awN
G. Lamm & A. Szabo. midi + 3 Gads + 3 Vit — ¢0)
Langevin modes of i=1 i=1
macromolecules. J. = Ri(t), i=1,...,3N
Chem. Phys. 85,
7334-7348 (1986) (R;(t)) =0

(R;(t)R;(t")) =2 f_l{:ﬂf‘?lf?‘ — )
The random forces [;(f) satisfy the averages above and m,; denote the particle
masses and ( represents the friction matrix.

Molecular Simulations Group 19



Langevin modes in
macromolecules

In Sec. IV we found that the full and reduced distribu-
tion functions can be expressed in terms of the eigenvalues
(A) of A, a 3N x 6N matrix L formed from the eigenvectors
of A, and the 6V X 3N transpose of this matrix (L7). In the
next section we will see that this can also be done for the
correlation functions. We now show that L specifies the free
modes of vibration of a system of damped harmonic oscilla-
tors in the absence of stochastic forces and designate such
modes Langevin modes.

The equation of motion for a system of ¥ three-dimen-
sional dampcd oscillators is

s(rJ]
sl

where A is defined in Eq. (2.6) and s, the mass-weighted
displacement, is defined in Eq. (4.9). It follows from Eq.

(6.1)

Molecular Simulations Group

() e (Y e
with 1 denoting the 3¥ < 3N unit matrix and

Yy = (mym;) =13, (2.7a)

F, = (m, m}}—uz;;; ; (2.7b)

The full distribution function p(at |e,) describes the
evolution of the system in phase space and incorporates the
coupling between the coordinate and the velocity degrees of
freedom. The reduced distribution function involving only
the coordinates may be found by integrating the full distribu-
tion function over all final velocities and an equilibrium
(Boltzmann) distribution of initial velocities. Defining the
mass-weighted displacement coordinates

s; =mAg,, i=1,..3N, (4.9)
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Langevin modes results compared
to normal modes

TABLE V. Comparison of the gas phase normal mode frequencies of butane with the Langevin eigenvalues of
Eq. (3.1) for low solvent viscosity (1 = 0.2 ¢p). The hydrodynamic radii are in the ratio 2:0:0:2 (with units
0.77 A). See the text for details.

— T ———————————————————————. —

Langevin eigenvalues (em™')

Gas phase n=02cp
frequencies*

{em™") Exact Zeroth-order® Second-order®

1046  — 16,32+ 104412 i — 16.47 + 1045.71 i — 16,29 + 1044.13 4

1004 —~ 1.35 4 1003.77 i —1.37 + 1003.95 — 1,35 + 1003.77 4

903  —29.72+ 90023 — 2987+ 902.35i —29.72 4+ 900244

437  —51.854+ 43434 — 5181 + 434.14; — 51.88 + 434.33;

NB. As 406  —29.12 4 400.39 —29.87+ 40507 —29.12 + 40042

| t 120 —120.12+ 103.09i — 2987+ 116.194 —21.52 & 102.19;
S.O ve n. T 0 -85 — 64,04 —80.75
— 65.53 — 64.57 — 65.69
YISCOSIty 0 —6432 —64.19 — 64.11
INcreases 0.00 0.00 0.00
0 0.00 0.00 0.00
daccuracy 0.00 0.00 0.00
decreases R 0 -123.77 —111.70 — 12522
— 108.49 - 107.50 — 108.53
(data not 0 -009i —12.04 1.49
0.09i 0.00 0.00
shown). o 000 0.00 0.00
0.00 0.00 0.00

*T and R indicate the frequencies of the three translationally and three rotationally symmetric gas phase

. . normal modes, respectively.
Molecular Simulatior ®Caleulated according to Eq. (8.7a). Both the zeroth- and first-order eigenvalues are identical (see the text). 21
®Calculated according to Eq. (8.16).
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