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Part | — Transition path sampling:
Throwing Ropes Over Rough Mountain
Passes, In the Dark
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Figure 7 The committor, p,. is computed along a single path in the transition path
ensemble (thick solid line, top panel) by determining the percentage of fleeting trial
trajectories starting from the configuration at time slice 7 (with random momenta)
that has reached region 4 in a time . Typically 10-100 of these fleeting trajectories
are needed to obtain p, accurately. For instance, p, 2 1 for the left time slice in the
top panel, because nearly all trajectories started from that time slice end in 4. The
configurations for which p, 2 pp are considered transition states.
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Figure 5 (a) The ratio of partition functions Z45(f) and Z 4 as a function of time 7.
calculated using the scheme illustrated in Figure 4, for the process described in the
section “Isomerization of a Solvated Model Dimer.” below. For times longer than that
required to commit to a basin of attraction (=7 in this example) but short compared to
the characteristic time of spontaneous transitions, this ratio is a linear function of time.
(See Equation 8.) The corresponding slope, i.e., the plateau value of d[Z45(f)/Z4]/dt
in (b), is the rate constant for transitions from A to B.



2.1 Transition path sampling

The calculation of the transition rate using the transition path
ensemble (TPE) technique consists of several steps (details of
this technique can be found in rel. 4 and 3):

1. Define the function fig(x)=1 when xe R and /ig(x)=0
otherwise, where R is either region A or B. This defines the two
stable sites. The transition from A to B should be rare.

2. Compute the probability {/ig(f)> that a path of length T
starting in A ends in B after a time ¢ provided that it has been in
B at least once during the time nterval [0,77;

Cha(1)S = [ dxg exp|—f# (xo) | ha(xo) He(xo, T )hg(x,)
b [ doxg exp[—B# (xo)]hia (o) Hp (0, T)
 [dxoF (x0, T)hp(x)

TdxoF (0. T) e
in which ¢ e [0,7] and
Hyglxp. T) = max hgix;) (2)
<is<
Fixg, T) = exp|—f# (xp)|hia(x0) Hg(x0, T) (3)

Here, we have assumed the following:

(a) All paths are determmistic, ie. the position of the end of
the path (x,) follows directly from the initial condition x; by
integrating the equations of motion, i.e.x, = x/{xy). We will use

PhysChemComm, 2001, 2, 1-7



molecular dynamics (MD) in the microcanonical (NVE)
ensemble for this.

(b) The initial conditions xg are taken from a Boltzmann
distribution, i.e. the total energy of a path (which is constant
along a path because the path itself is obtained by a MD
simulation in the NVE ensemble) is sampled in the canonical
ensemble.

3. Compute the probability C(¢) that a path that starts in A
ends in B after time ¢. For this, we can write

i) = [ dxg expl—p# (xo)|f1alxo)hp(x) - an
0 [dxgexp|—fA (xo)|halxo)

diP(i.t) (4
in which

N [ dxp exp|—fA# (x0) ] ha(x0)d[A — A(x/)]
J dxgexp[—f# (xq)]ha(xo)

P(4,1) (3)

Here, we have defined region B using an order parameter / in
such a way thatregion B is between A, and A, P(A.7) can be
interpreted as the probability for the system to be in a state with
a certain « after time ¢ given that the system is in A at time 0.
Because P(4.7) 1s quite small in B (ie. transitions from A to B

are rare), it is advantageous to use umbrella sampling'* ' to
compute P(4,¢). By defining overlapping regions B; by
x.€B; if Amin (1) < A(x) € Apax (1) (6)

in such a way that the union of B; equals the total phase space,
one is able to calculate

 [dxoexp|[—p# (x0)|ha(xo)hs,(x:)d[4 — A(xi)]
a | dxo exp[—p.# (x0)|1a (x0)hs, (x:)

B [ dxof (x0,1,§)8[4 — A(x;)]

o [ dxqf(xo, 1.0

P(4,t,1)

(7)

in which
Sxp, t,1) = exp[—pA (xo) |1 (x0) g, (x,) (8)
flxg.t,0) 1s the ensemble of all paths starting in A and ending

in B; at time ¢. Because P(Lfi)ocP(A.tj). one is able to
construct (4,¢) by matching the histograms and normalizing.



4. Finally, the transition rate ks _g(number of events per
unit of time) is calculated using

dCir) _ C(t) § d[“"]ﬂ“]}ﬂxu,?}. o
dt <1‘r.i'B|:fj:|}F|:_,_.“‘T:l di

ka_p =

The quantities {hg(f)>[eqn. (1)] and P(i0)[egn. (7)] can be
interpreted as ensemble averages over distributions Flx,, T) and
flxo.1.0), respectively. As these ensemble averages are averages
over paths starting in A (represented by the initial condition
xg). the resulting ensemble 1s called the transition path
ensemble. Therefore, one can use a conventional MC
procedure to sample from these distnbutions. The trial
moves for sampling from these distributions are described in
detail in ref.5 and briefly mentioned in section 3.



Partial path sampling
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Fig. 3. Path swapping move for PPTIS. The last hall of the path in the /; ensemble and the first half of the path in the /4; ; ; are
swapped to the 4; 4 1 and 4; ensembles. respectively.



Time as transition parameter

Fig. 5. Time as transition parameter. The square denotes the definition of the boundary for state 4. The thin lines are free energy
contour lines. The four panels show the representation of generated trajectories in successive time-interface ensembles. At panel (1),
P F 11| F) 1s the fraction of of trajectories that stay outside A longer than . ;. (open arrows). All trajectories have at least a length
F ;. The solid arrows are the paths that return to 4 before ;. Atpanel (2), 24 F ;2|9 ;1) is caleulated for paths that remain outside
A longer than 77;,;. The minimum length of the paths is further increased at panel (3). Incdentally, a path will end up in the yet
unknown state B. At panel (4) the minimum path length constraint forces all the paths into the metastable state region B. From here,
they will not return. Hence, 2, |0) will show a plateau.

T.S. van Erp, P.G. Bolhuis / Journal of Computational Physics 205 (2005) 157-181



424 Sampling ensembles of deterministic transition pathways

A B
Fig. 1 Scheme of the shooting algorithm. A point #{ is selected at random along an existing path

! ) connecting A with B. The momenta p{ at time ¢ are then changed by a small amount ép

creating the new momenta p'. Starting from {gf', p/} the new path (----} is calculated by forward

and backward integration of the equations of motion. The new path is accepted according to a
Metropolis criterion.

Faraday Discuss., 1998, 110, 421-436
A B

J. Chem. PhyS., Vol. 110’ No. 14’ 8 Aprll 1999 FIG. 1. Schematic representation of the shooting move (2), the shifting

move (b)), and the path reversal move (c).
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Figure 9 Four different potential or free-energy landscapes F(q, 5). Alongside each are
plotted the corresponding free energy, F(g*, s), and committor distribution, P(p,). for the
ensemble of microstates with g = ¢*. For landscape (a). the reaction coordinate is adequately
described by ¢. and P(p,) 1s peaked at p, = 1/2. For landscape (b). the reaction coordinate
has a significant component along s, as indicated by the barrier in F(g*, 5) and the bimodal
shape of P(p,). In(c). 5 is again an important dynamical variable. In this case P( p ) is nearly
constant. suggesting that motion along s is diffusive when ¢ is near g*. Finally. for landscape
(d). the reaction coordinate is orthogonal to g. reflected by the single peak of P(p,) near
ps = 0.In this case, almost none of the configurations belonging to the constrained ensemble
with ¢ = g* lie on the transition state surface.



Malier-Stein potential

-

FIG. 1. The potential-energy surface of the Maier-Stein system,
Eqg. (3), with ee=1 and p=1. Darker shading indicates lower en-
ergies. Note the stable states at (+ 1,0), the transition state at (0,0,
and the surface dividing the stable states (the separatrix) at x=0.
These general features persist for the other values of the parameters
used in this paper, although the force field is no longer the gradient
of a potential energy. For this equilibrium sistem the most probable
path connecting the stable states (and therefore the path that domi-
nates fransitions in the weak noise limit) mns directly along the x
axis.

networks [16]. As a particular example, we adopt the follow-
ing two-dimensional system [x=(x.y)]| proposed by Maier
and Stein [4], namely.

F(x,y)=(x—x’—axy’,— uy(1+x?)). (3)

LRl

This field is not the gradient of a potential energy unless «
= . The potential-energy surface for the gradient field «
= u=1. 1s shown in Fig. 1. which should serve to orient the

PHYSICAL REVIEW E, VOLUME 64, 026109



| ennard-Jones clusters

A B o )
2.3 )¢ 3 ; ?*-,2 @2
1604 1 t.Z,-‘5_4 1% 3 4 1134
6.5 6 ) 65

-10

E BC

=2

E y AB /*‘ﬂ\ co
- Zaid ==

E ,.FF/ h‘\ Pl \ / Ki\

= ] i oy e Y

= ) '.._

5 o B c ',

= tf by

2 a2t i

£ A V, =V, =-12.534 b

£ iy Vg =V, ==11.501 \.

= — Vg = Yop=-11.008 e

A Ve = —10.800 o
3 0.2 0.4 0.6 0.8 1
L3

FIG. 1. Top figure: a transition pathnwav by which the central
atom mugrates to the surface in a seven-atom hexagonal Lennard-
Jones cluster in the plane. The pictures show successive configura-
tions corresponding to local minima of the potential energy along
the path Bottom fisure: the potential energy along the path in nat-
ral units. The solid line corresponds to a sinmmlation with N= 200
discretization points along the string and the dashed line N=20.

PHYSICAL REVIEW B 66, 052301 2002



1 __ Open Cascade of Switchesin 5 _ Arg258
b Polymerasef’s Conformational Change ___Pertisl_rotation
deduced by Transition Path Sampling|

] dCTP sugar =5 -
re-puckering Rxn. Coordinate ——

Fig. 4. (Upper Center) Overall captured reaction kinetics profile from TPS for pol g's closing transition (for a G-C system) from the open state and estimated
energies in units of kgT (product of Boltzmann constant and absolute temperature). Different barrler regions (TS) and metastable basins along the reaction
coordinate are illustrated (Images 1, 2, 4-6, and 7). (Lower Center) Structure of pol 8/DNA/dCTP ternary complex.

5970-5975 PNAS April 20, 2004 vol. 101 no. 16



|_asso/Bolas — Schlick et al.

e Harvest short trajectories
o 2-3 Simulations studies first

 Perl script implements TPS and calls
CHARMM for all-atom dynamics

The shooting algorithm [6] generates an ensemble of molecular dynamics trajectories
connecting two local minima (metastable states) A and B (see Fig. 8) in a free energy
landscape via Monte Carlo sampling. For a given dynamics trajectory, the state of the system
(i.e., basin A or B) is characterized by defining a set of order parameters x = {x1, x2, - }-
These order parameters are geometric quantities such as dihedral angles, bond distances,
rms deviations of selected residues with respect to a reference structure, and so on. For
biomolecules, as we show later, the key to a successful TPS application is identifying these
key variables. Here, the groundwork simulations were important [7-9]. To formally identify a
basin, the population operator h4 indicates if a particular molecular configuration associated
with a time £ of a molecular dynamics trajectory belongs to basin A:

J. Chem. Phys., Vol. 121, No. 5, 1 August 2004



Hpix}"

Eq. 3

In summary, we implement BOLAS for each y; defining
a transition using the following steps.

(1) We define the order parameter window X; pu<X;
< Ximax 101 Which to calculate the free energy profile.

(2) We harvest dynamics trajectories according to the
action 1 Eq. (3) but accept them only if they wvisit the win-
dOW X' min<Xi=Ximax dUrng time 7.

(3) We use the configurations contained within the en-
semble of accepted trajectories to cq:rmpute the probability
distnbution P(y;) according to Eq. (6) by constructing a
histogram corresponding to y;.

(4) We combine the probability distributions P(y) in
successive windows by aclljmtmg the constants in Eq. (8) to
make A;(y;) continuons.”

(5) We compute the relative free energies using Eq. (7).

< Xi B, min “ X 4 min

A x;)=—kgT In[ P(x;)]+ const.

1 if there exists 0<<t<<7 such that hgiri=1  Plx;)= J-ﬂrf"ﬁ’FS{X}T;-] 8(x; —x1).
0 otherwise '
exp{— B[F(B)—F(4)]}
S{x} =p(0)h 4 ¥ HElx1". - .
{xX}'=p ALX BIX} _ [H PG J‘Jr.a dxiPix]).

(6)

(7)

(8)



TPS Elaborated

biased sampling techniques [17-19]. Here. kg 1s the Boltzmann constant and 7T is the temperature.
The maximum A* in F(4) defines the dividing surface {x]Ai(x) = A*} separating state A from state B.
By convention, the system 1s in A if A(x) <A* and in B if A(x) > /* For a phase point x in A, the
probability to be at the top of the barrier 1s:

—BF(2*)

(0(4(x) = 47)) ¢
PA) = — = — : I
(A7) res (04 (x))} fix, d) e—BF(2) (1)

where the brackets {---) denote the equilibrium ensemble averages, 0(x) and o(x) are the Heaviside step-
function and the Dirac delta function, respectively, and = (kgT)~'. TST assumes that trajectories that
cross A* do not recross the dividing surface. Hence, the TST expression 1s equivalent to the positive flux
through the dividing surface 4*:

T = (10(39)), PO e o

where the dot denotes a time derivative and the subscript A* to the ensemble brackets indicates that
the ensemble 1s constrained to the top of the barrier on the dividing surface 2*. The TST rate con-
stant 1s sensitive to the choice of reaction coordinate A(x) and will only be correct if the surface
L x|A(x) = A%} corresponds to the true transition state dividing surface: the so-called separatrix at
which no correlated recrossings occur. For complex systems, it 1s impossible to know the location
and shape of this curved multidimensional separatrix and 1t 18 even questionable if such surface
always exists. It 1s possible. however, to correct the TST expression with a dynamical factor that
1s called the transmission coeflicient.

Journal of Computational Physics 205 (2005) 157-181



e Main loop

(1) Take a uniform random number #; in the mterval [0:1].

(2) If #; <y perform a time-reversal move. Otherwise, perform a shooting move.

(3) If the trial path generated by either the time-reversal or shooting move 1s a proper path in the 4,
ensemble accept the move and replace the old path by the new one, otherwise keep the old path.
Update averages and repeat from step 1.

o Time-reversal move

(1) If the current path ends at »; ; | reject the time-reversal move and return to the main loop.

(2) If the current path starts and ends at #,, reverse the momenta and the order of time-slices. On this
reverse path, xp 1s the new first crossing point with 4;. Return to the main loop.

e Shooting move

(1) On the current path with length N® choose a random time slice 7', with <<

(2) Change all momenta of the particles at time-slice © by adding small randomized displacements
op = dwy/m with dw taken from a Gaussian distribution with width oy and m the mass of the
particle [14].

(3) In case of constant temperature (NVT) simulations: accept the new momenta with a probability [4]:

min [l ,EXp (ﬁ(:’:’[_rrﬂr} - E[_r[:,"ir )H .

Here, E(x) is the total energy of the system at phase space point x. In case of constant energy (NVE)
simulations in which possibly also total linear or angular momentum should be conserved: rescale all
the momenta of the system according to the procedure described in [37] and accept the new rescaled
momenta.

If the new momenta are accepted continue with step 4, else reject the whole shooting move and
return to the main loop.



(4) Take a uniform random number %y In the interval [0:1] and determine a maximum allowed path
length for the trial move by:

rl \ by rl ]
N = int(N' I"'Ig;l.

TIax

(5) Integrate equations of motion backward in time by reversing the momenta at time slice ', until
reaching either 4y, 4; +; or exceeding the maximum path length "-.'m“ix It the backward trajectory
did not reach /44 reject and go back the main loop. Otherwise continue with step 6.

(6) Integrate from time slice " forward until reaching either 445 4; 4+, or exceeding the maximum path
length N'™ . Reject and go back to the main loop if the maximum path length is exceeded or if
the entire trial path has no crossing with interface 4, Otherwise continue with the next step.

(7) Accept the new path, reassign x; to be the first crossing point with 4; and return to the main loop.

Finally, the probability #°,(4;,,|+;) follows from:

.'H'l-'rpf“ — f‘l‘ l;|
Np(total)

P4 [*':-:'+l |f:-;'J' - [29}

with N,(0 — i + 1) the number of sampled paths that connect 4y with 4; , | and N (total) the total number
sampled paths in the ensemble of interface «,.



Part Il - Supersymmetric MD

New ‘MD’ equation

N [ 2N
;_?H d )
— = | —Hg-NMW) + 2, — { 2 Agw; ,-"1.-'(1%')»1?-} W
at i1 Wi\ iD)
It has been shown [11,13] that a hidden supersymmetry is
) associated with the Kramers equation: By extending the
iW{q.p. 1)=—HgW(q.p.1), space with 4N-fermion operators
ot . .
T o T o
lag.a,} =8y, {bub)}=6y,, (8)

Supersymmetric version is _
Evolution eqgn.

N N
| % .
H H+—2 ba+2('ybh—ab). ] 2
TR ,u = dq#d‘?v # %Wr- = ,"‘\."'d("ﬁ')l‘l»'r- = 2 Ar-j-w ;-
c- .
) . wiAw
"Tap, o _o v N(w) = .
Hy = E — (m‘y’i'"— + VPt —) |'ﬂr|
umt L g, m dp# Py q,, |
E} — 8, /m
A=| oV : .
PHYSICAL REVIEW E 75, 046707 2007 \ 99,99, Ynv .=



“How does the presence of different time scales reflect in

the one-fermion sector of the spectrum of HSK? In a simpli-
fied setting where entropy plays no role and the separation of
time scales is purely due to the characteristics of the energy
landscape, the use of a WKB technique in the limit T—0
shows explicitly 10 that, while the zero-fermion states are
Gaussians centered on the local minima of the energy, the
corresponding i.e., related by the supersymmetry onefermion
states are the “reduced current” densities 11 obtained

by applying the SuSy charge operator to the probability
currents 7, concentrated on the saddles that separate

those minima. In other words, the dynamics given by

Egs. 2 and 24 evolves in such a way that the walkers

quickly that is, on a time scale larger than fast but much
smaller than slow organize themselves into trails going from
one local minimum to another one by overcoming the energy

barrier along the reaction path 9.” :
q=p/m,

p=—VV+\2myTn- yp.

2N
d . -
— W= N (H'JH'E' - E Ar'jwj'
dt J=1

(2)

(24)



In our implementation, the Langevin equation 1s solved
by means of the second-order quasisymplectic integrator de-
scribed in Ref. [29], while the conservation of the norm of
the vector w 1s achieved by applying the implicit midpoint
rule (see, for instance, Ref. [30]).

The friction coefficient entering the Langevin equation is
set to ¥=25ps !, and the mass of each particle is
m=100 amu. The time step used in all dynamical simula-
tions is &t=10"%ps. The SuSy MD simulations used
~60 000 independent walkers for each temporal snapshot
considered.

The simple tilted Mexican hat problem, and in general any two-
dimensional situation. allows us also to understand the different roles
plaved by partner eigenstates below the gap in the one and two fermion
subspaces. As we have mentioned above, all the right two-fermion eigen-
states which are partners to the loops can be obtained (always in two
dimensions) from the zero-fermion left eigenstate of the inverted potential.
This means that each corresponds to a constant in the region spanned by
all trajectories descending from a saddle of index two (its unstable mani-
fold). and this will be also true in more dimensions.



Langevin/Fokker-Planck processes can be immersed in a larger
frame by adding fictitious fermion variables.

dR.(x.1) N o 8E

=—Hpp R.(x,1)—
dt Fp Relx, 1) ;

Rp(x,1). (7)

dx-0xp

Equation (7) is one of the main instruments of this paper. It evolves a vec-
tor field R(x,t) so that it rapidly becomes a linear combination of one fer-
mion states “below the gap’.

In the low temperature limit there are two metastable states each
concentrated around one of the minima. Barrier penetration leads to the
Gibbs measure, the symmetric combination of those states. In fact the
spectrum of the Fokker-Planck Hamiltonian will contain one zero eigen-
value 19=0 (the Gibbs measure). one small 1, ~ O (e~2/T) eigenvalue and
the rest of them much larger (O(1)). The two pure states, localized on the
right and on the left are o quu}iwlRuL respectively. If we are inter-
ested in the dynamics of the passage between the two wells we have to
consider times such that the fast relaxation within each well has already
taken place. At such times, larger than r; ~ %f{)g(?—f}. we are left only with
a distribution

PU}'.f>>f]}EC‘Q%'“JGR—I—E‘]%I'IJ]RE_}L”. (31)

i.e. a combination of states localized to the right and to the left, depen-
dent upon the initial condition and time.



(a) (c)

(h) N (d)

(1)
1R |
_‘u% —_— it
0 |

. .—.-i'..-" T.:I I

Fig. 3. The potential and different eigenstates along the reaction coordinate: (a) is the equi-

librium density (%), (b) the first eigenstate - the most stable (%), () is the current den-
sity (j1) from the first eigenstate and (d) the spectrum with the gap and the two fermionic

sectors.



Fig. 7. Snapshot of a population of walkers in the stationary state. The potential is taken

from.®? It has two minima (right and left). two saddles (top and bottom) and a maximum
in the center.

Work is in progress,“#241) stimulated by the prejudice that things that
are pleasant should also be useful.

Journal of Statistical Physics, Vol. 116, No. 5/6, September 2004



Mexican hat potential example, worked out:

A low temperature example will make things clearer. Consider the
tilted Mexican hat in two dimensions (Fig. 4): it has a minimum, a
maximum, and a ‘blind” saddle. one that does not lead anywhere. The
two-fermion lowest eigenstate is of the form

%) = azaylo®) @ 1-), (56)

where p®(x, y) satisfies:

5 AE\ 9 g, 9 8EN O & . r_
—(TE—FE) EP U‘}.}_(T@—FE) 3—1.0 (X, y)=ap~(x, y),
(37)

which is easily obtained permuting (fermion) particles and holes in the
Hamiltonian (13). The lowest-lying one-fermion eigenstate is obtained by
noticing that the eigenvalue equation (57) corresponds to the equation sat-
isfied by the left eigenstate of a Fokker-Planck equation in a the reversed
potential —E(x, v) (cfr. Eq. (20)). From the discussion in Sectiond4. we
conclude that p® (the only A(x, y) for the reversed problem) is essentially
constant within the region spanned by all gradient lines descending from
the local maximum (the unstable manifold of the maximum. or the stable
manifold of the minimum of —E) — and drops sharply to zero at the bor-
der of this region. Acting with Q@ on p®. we obtain the current:

apR  3pk
R, ., R, .
(X_],‘ {‘x‘}'}"X}r {);.1})*"#( 31‘ A 3}' )' (

N
(o]
—



Fig. 4. A landscape with a minimum, a maximum and a blind saddle. Below: the low
eigenvalue spectrum for zero, one and two fermions. The dotted line is the zero level,
other eigenvalues are exponentially small in 1/7T. Next higher eigenvalues start at (1) (not
shown).

0 I 2

Figz. 5. A sketch of an energy surface with four minima (full circles), four maxima (open Ende
circles) and seven pathways passing through one saddles. The thick paths have a low activa-
tion times. On the right the corresponding spectrum of the Hamiltonian (13).
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