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Cytotoxic T lymphocytes (CTL) play a central role in defeating 
intracellular infections with pathogens, such as viruses and 
certain bacteria. The CTL T-cell receptor (TCR) recognizes 
foreign peptides in complex with major histocompatibility 
complex (MHC) class I molecules on the surface of the infected 
cells. MHC class I molecules preferably bind and present nine 
amino acid long peptides, which mainly originates from proteins 
expressed in the cytosol of the presenting cell. In most 
mammals, MHCs exist in a number of different allelic variants 
each of which binds to a specific and very limited set of 
peptides.!





The process of infection and the life cycle of 
CTLs in the model. Target cells are infected by 
virus, and these infected cells generate more 
virus and interact with T cells. Naıve cells, 
when stimulated by antigen proliferate and 
become effector cells. The probability of a 
naıve cell being stimulated by antigen depends 
on the string distance between the TCR and 
the antigen-MHC complex. Most effectors die, 
but about 5% of these proliferating effector 
cells become memory cells. The memory cells 
can be stimulated to become effectors in a 
secondary response (not shown).!





Use Artificial Neural Networks (ANN) to predict MHC-I!
binding affinities!

was found by linear regression analysis. The regression line was

close to the expected y¼ x demonstrating that ANN indeed can

be trained to predict binding quantitatively. For comparison pur-

poses, ANN of the conventional classification type (i.e., such as

those of Gulukota et al. (21)) were generated, and their output was

fitted and calibrated in the best way possible as a work-around to

obtain quantitative predictions (data not shown). As expected,

the quantitatively trained ANN (CPearson¼ 0.87) were signifi-

cantly (P< 0.01) more accurate (i.e., able to predict the experi-

mental value) and more precise (i.e., reproducible) than the

classification trained ANN (CPearson¼ 0.73). This supports our

contention that a measured affinity contains more information

than a binary binding/non-binding encoding. To our knowledge

this is the first attempt to use quantitative data to train an ANN

to predict peptide binding to HLA molecules, that is, we train the

actual affinity values. In contrast, others have used a binary

binding/non-binding encoding (20, 21, 24), or a more elaborate

grading of binding (a ‘staircase’ encoding) (22, 23) for training

purposes.

Unfortunately, it is not possible to validate our ANN-driven

server against any of the other reported ANN-driven predictions

of peptide–MHC interactions as none of these have been made

available publicly and none have addressed the specificity of

HLA-A*0204. Strictly speaking, only another HLA-A*0204 predic-

tion can be compared to the present ANN-driven HLA-A*0204

prediction. We have previously used positional scanning combina-

torial peptide libraries (PSCPL) to generate a quantitative HLA-

A*0204-specific peptide binding matrix, and shown that it can be

used to predict peptide binding. Reassuringly, the ANN-driven

prediction (CPearson¼ 0.87) described here outperformed this

matrix-based HLA-A*0204 prediction (CPearson¼ 0.85). In an

attempt to perform an independent validation of the present ANN

prediction, we compared it to predictions of the closely related HLA-

A*0201 (a single methionine to arginine substitution at position 97

distinguishes HLA-A*0201 from HLA-A*0204). Two publicly avail-

able HLA-A*0201 predictions are in frequent use: BIMAS at http://

bimas.dcrt.nih.gov/molbio/hla_bind/and SYFPEITHI at http://

www.syfpeithi.de. Best possible fits of the BIMAS and SYFPEITHI

HLA-A*0201 predictions (as in Udaka et al. (33)) were compared to

our ANN-driven HLA-A*0204 prediction. Our ANN-driven predic-

tion outperformed both matrix-driven predictions (BIMAS

CPearson¼ 0.83 and SYFPEITHI CPearson¼ 0.81). Thus, the precision

of the ANN-driven prediction is superior to comparable matrix-

driven predictions. We attribute this to the ability of ANN-, but

not matrix-, driven methods to incorporate correlated effects.

Another notable advantage of the ANN-driven prediction is its

ability to predict the exact binding affinity value, whereas the

BIMAS prediction is somewhat arbitrary (some of the values are

even assigned) and the SYFPEITHI prediction is completely arbi-

trary (all values are assigned). Thus, the accuracy of the ANN

prediction is considerably better than that of the two competing

predictions.

Fig. 1. ANN can perform quantitative predictions of

peptide–MHC–I interaction. The binding affinity was

measured in a biochemical assay (31) and expressed as

the logarithm of the equilibrium dissociation constant

(KD (nM)). Subsequently, first generation ANN were

trained to quantitatively predict the logarithm of the

affinity of peptide binding to HLA-A*0204 using a

cross-validation approach. This allowed the affinity of

every peptide to be predicted by an ANN, which had

not been trained on the peptide in question. The

logarithm of the predicted binding vs the logarithm of

the observed binding was plotted and analyzed by

linear regression. The regression line was y¼ 0.99x"0.02

(n¼ 397, CPearson¼ 0.87, P< 0.001).

Buus et al : Quantitative predictions of MHC-I peptide binding

Tissue Antigens 2003: 62: 378–384 381
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Pancreatic Cancer!



Malignant Melanoma!



BRAF V600E!
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Introduction

Missense mutations in cancer cells can generate unique T cell epi-
topes.1 Natural antigen-specific T-cell responses against missense 
mutant epitopes in acute myeloid leukemia (AML), melanoma, 
renal and lung cancer have been discovered using traditional dis-
covery methods based on CD8+ tumor infiltrating lymphocytes 
(TILs).2–6 Such foreign epitopes have been shown is to facilitate 
immunosurveillance and cancer control in chemically-induced 
murine models of carcinogens.7 Furthermore, sequencing efforts 
have identified 50 mutated peptides that can serve as rejection 
antigens in transplanted B16 murine melanoma.8 The marked 
increase in tumor sequencing efforts has provided an opportu-
nity to discover mutant epitopes that strongly bind to human 
HLA, compared with wild-type peptides, and may thus be effec-
tive mediators of T-cell responses. Thus, knowledge of a patient’s 
HLA type and missense mutation profile provides the opportu-
nity to develop personalized peptide vaccines. Evidence support-
ing the efficacy of vaccination strategies based on mutant epitopes 

Antigen-speci!c immune responses against peptides derived from missense gene mutations have been identi!ed in 
multiple cancers. The application of personalized peptide vaccines based on the tumor mutation repertoire of each cancer 
patient is a near-term clinical reality. These peptides can be identi!ed for pre-validation by leveraging the results of massive 
gene sequencing e"orts in cancer. In this study, we utilized NetMHC 3.2 to predict nanomolar peptide binding a#nity 
to 57 human HLA-A and B alleles. All peptides were derived from 5,685 missense mutations in 312 genes annotated as 
functionally relevant in the Cancer Genome Project. Of the 26,672,189 potential 8–11 mer peptide-HLA pairs evaluated, 0.4% 
(127,800) display binding a#nities < 50 nM, predicting high a#nity interactions. These peptides can be segregated into two 
groups based on the binding a#nity to HLA proteins relative to germline-encoded sequences: peptides for which both the 
mutant and wild-type forms are high a#nity binders, and peptides for which only the mutant form is a high a#nity binder. 
Current evidence directs the attention to mutations that increase HLA binding a#nity, as compared with cognate wild-type 
peptide sequences, as these potentially are more relevant for vaccine development from a clinical perspective. Our analysis 
generated a database including all predicted HLA binding peptides and the corresponding change in binding a#nity as a 
result of point mutations. Our study constitutes a broad foundation for the development of personalized peptide vaccines 
that hone-in on functionally relevant targets in multiple cancers in individuals with diverse HLA haplotypes.
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has already been generated. For instance, peptides derived from 
codon 3 mutations in RAS family members can readily induce 
immunity in patients with pancreatic, lung, and colon cancer 
patients.1,9–14

However, RAS mutations do not generate optimal antigens 
in most cancer patients. Indeed, RAS is a relatively commonly 
mutated gene, yet is present only in a minority of patients. Models 
of peptide-HLA binding affinity can facilitate the identification of 
novel and “personal” targets for cancer vaccines. To the best of our 
knowledge, computational methods to discover mutant epitopes 
and the differential binding affinity to HLA were first applied 
by Segal et al. to a data set from breast and colorectal tumors.15 
In this study, 1,152 peptides were interrogated for HLA-A*02:01 
binding in silico. Similarly, Warren et al. subjected a general sur-
vey of mutations to multiple in silico HLA-binding algorithms 
in an effort to identify a polyvalent peptide vaccine optimized 
for prophylactic use.16 HLA allelic frequency in the United States, 
mutation frequency and tumor subtype frequency were given 
equal consideration to generate the proposed vaccine formulation.



Step 
 

Action Results 

1 Mine COSMIC database Known oncogenic 
mutations 

2 Collect wildtype gene sequences and 
gene point mutations 
 

250 genes 
5,685 mutations 

3 Generate peptide epitopes of 8, 9, 10, 
and 11-mers  
 

76 strings/mutation 
1,441,519 strings 

4 Run NetMHC 3.2 binding affinity 
prediction artificial neural network 
algorithm 

 79 HLA alleles 
possible binding 
events = 31,566,629 
epitopes scanned 

5 Analyze complementary wildtype and 
mutated peptides for binding affinity 

Develop and analyze 
facilitating and 
neutral mutations 



How$were$the$mutant$and$wildtype$epitopes$generated?$

KRAS$posi9on$12:$
12p.G12?(50)$p.G12A(1178)$p.G12A(2)$p.G12C(1)$p.G12C(2478)$$
p.G12C(3)$p.G12D(7158)p.G12D(2)$p.G12D(15)$p.G12E(2)$$
p.G12E(1)$p.G12F(32)$p.G12F(2)$p.G12G(5)$p.G12G(1)p.G12I(4)$
$p.G12L(4)$p.G12L(1)$p.G12N(5)$p.G12N(1)$p.G12R(691)$p.G12S(1118)$$
p.G12S(1)p.G12V(3)$p.G12V(4771)$p.G12V(6)$p.G12W(2)$p.G12W(1)$p.G12Y(2)$

Examine$an$individual$muta9on:$$

Generate$epitopes$of$length$8,$9,$10,$and$11$around$the$muta9on$site,$with$shiWs$to$include$$
all$possible$muta9onZgenerated$epitopes:$

ShiW$Zero$(0):$
8mers$
>G12VZwildtypeZsequenceZ0ZHLAZA0201$$$$$GGVGKSAL$$$$$$$$22646$
>G12VZmutantZsequenceZ0ZHLAZA0201$$$$$$$VGVGKSAL$$$$$$$$22746$
9mers$
>G12VZwildtypeZsequenceZ0ZHLAZA0201$$$$$GGVGKSALT$$$$$$$23431$
>G12VZmutantZsequenceZ0ZHLAZA0201$$$$$$$VGVGKSALT$$$$$$$23376$
$
ShiW$One$(1):$
8mers$
>G12VZwildtypeZsequenceZ1ZHLAZA0201$$$$$AGGVGKSA$$$$$$$$24426$
>G12VZmutantZsequenceZ1ZHLAZA0201$$$$$$$AVGVGKSA$$$$$$$$19958$
9mers$
>G12VZwildtypeZsequenceZ1ZHLAZA0201$$$$$AGGVGKSAL$$$$$$$24412$
>G12VZmutantZsequenceZ1ZHLAZA0201$$$$$$$AVGVGKSAL$$$$$$$19029$
$

ZZ>$Calculate$MHC$Class$I$binding$affinity$using$NetMHCZ3.2$$

Wildtype Shift 0! GGVGKSALT!
Wildtype Shift 1! AGGVGKSAL!
Wildtype Shift 2! GAGGVGKSA!
Wildtype Shift 3! VGAGGVGKS!
Wildtype Shift 4! VVGAGGVGK!
Wildtype Shift 5! VVVGAGGVG!
Wildtype Shift 6! LVVVGAGGV!
Wildtype Shift 7! KLVVVGAGG!
Wildtype Shift 8! YKLVVVGAG!
 !  !
Mutant Shift 0! VGVGKSALT!
Mutant Shift 1! AVGVGKSAL!
Mutant Shift 2! GAVGVGKSA!
Mutant Shift 3! VGAVGVGKS!
Mutant Shift 4! VVGAVGVGK!
Mutant Shift 5! VVVGAVGVG!
Mutant Shift 6! LVVVGAVGV!
Mutant Shift 7! KLVVVGAVG!
Mutant Shift 8! YKLVVVGAV!
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Facilitating mutation distribution for human HLA-A and HLA-B alleles. plot of tight binding 
mutated peptides (< 50 nM mutated peptide affinity score) from the cancer Gene census and 
corresponding wild-type peptides affinity score for each cognate hLa allele. Light green 
background indicates the threshold (500 nM) of predicted non-binding wild-type peptides.!
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Facilitating mutations utilize peripheral anchor residues. plot of tight binding mutated 8, 9, 10 
and 11 mer peptides (mutated peptide affinity score < 50 nM) and corresponding wild-type 
peptides affinity score for each cognate hLa-a (a) and HLA-B (B) allele. Light green 
background indicates the threshold (500 nM) of predicted non-binding wild-type peptides. 
coloring indicates the position of each mutation in the peptide string (starting from the c 
terminus): dark blue (1), light blue (2), orange (3), light orange (4), dark green (5), light green 
(6), red (7), pink (8), purple (9), light purple (10), brown (11).!
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Facilitating mutations utilize peripheral anchor residues. plot of tight binding mutated 8, 9, 10 
and 11 mer peptides (mutated peptide affinity score < 50 nM) and corresponding wild-type 
peptides affinity score for each cognate hLa-a (a) and HLA-B (B) allele. Light green 
background indicates the threshold (500 nM) of predicted non-binding wild-type peptides. 
coloring indicates the position of each mutation in the peptide string (starting from the c 
terminus): dark blue (1), light blue (2), orange (3), light orange (4), dark green (5), light green 
(6), red (7), pink (8), purple (9), light purple (10), brown (11).!



Table&1.&Facilitating,&mutated&strong&binding&HLA9A&02:01&peptides

FASTA&wt wt&Peptide nM&(wt) FASTA&mt mt&Peptide nM&(mt) Delta&nM&
>ALK%R401Q%wildtype%sequence%1%HLA%A0201: FRVALEYI: 15009 >ALK%R401Q%mutant%sequence%1%HLA%A0201: FQVALEYI: 29 14980
>BAP1%H169Q%wildtype%sequence%1%HLA%A0201: FHFVSYVPI: 13143 >BAP1%H169Q%mutant%sequence%1%HLA%A0201: FQFVSYVPI: 21 13122
>BRAF%K475M%wildtype%sequence%1%HLA%A0201: GKWHGDVAV: 15489 >BRAF%K475M%mutant%sequence%1%HLA%A0201: GMWHGDVAV: 13 15476
>CDK6%P199L%wildtype%sequence%1%HLA%A0201: TPVDLWSV: 14601 >CDK6%P199L%mutant%sequence%1%HLA%A0201: TLVDLWSV: 12 14589
>CHEK2%P536L%wildtype%sequence%1%HLA%A0201: RPAVCAAV: 20392 >CHEK2%P536L%mutant%sequence%1%HLA%A0201: RLAVCAAV: 25 20367
>EGFR%H773L%wildtype%sequence%8%HLA%A0201: VMASVDNPH: 22464 >EGFR%H773L%mutant%sequence%8%HLA%A0201: VMASVDNPL: 48 22416
>FANCF%P185L%wildtype%sequence%1%HLA%A0201: RPARFLSSL: 22304 >FANCF%P185L%mutant%sequence%1%HLA%A0201: RLARFLSSL: 38 22266
>GNAS%D141V%wildtype%sequence%8%HLA%A0201: SVMNVPDFD: 20809 >GNAS%D141V%mutant%sequence%8%HLA%A0201: SVMNVPDFV: 24 20785
>ITK%G372V%wildtype%sequence%7%HLA%A0201: FVQEIGSG: 19247 >ITK%G372V%mutant%sequence%7%HLA%A0201: FVQEIGSV: 48 19199
>JAK1%E966V%wildtype%sequence%8%HLA%A0201: FLPSGSLKE: 17955 >JAK1%E966V%mutant%sequence%8%HLA%A0201: FLPSGSLKV: 11 17944
>JAK2%K539L%wildtype%sequence%8%HLA%A0201: HMNQMVFHK: 18253 >JAK2%K539L%mutant%sequence%8%HLA%A0201: HMNQMVFHL: 35 18218
>KRAS%Q61L%wildtype%sequence%10%HLA%A0201: CLLDILDTAGQ: 6354 >KRAS%Q61L%mutant%sequence%10%HLA%A0201: CLLDILDTAGL: 26 6328
>NOTCH1%R1634L%wildtype%sequence%1%HLA%A0201: KRAAEGWAA: 21734 >NOTCH1%R1634L%mutant%sequence%1%HLA%A0201: KLAAEGWAA: 24 21710
>RB1%P515L%wildtype%sequence%1%HLA%A0201: FPWILNVL: 10736 >RB1%P515L%mutant%sequence%1%HLA%A0201: FLWILNVL: 13 10723
>TP53%P47L%wildtype%sequence%8%HLA%A0201: AMDDLMLSP: 10776 >TP53%P47L%mutant%sequence%8%HLA%A0201: AMDDLMLSL: 11 10765



So, what has this database accomplished?!
!
An experimentalist can test MHC binding for 10-20 epitopes in a month!
!
We tested 32,000,000, and got a database of 65,000 leads.!
!
32,000,000 total/20 epitopes=1,600,000!
1,600,000/12 months = 133,333 years!
!
We are currently doing a follow-up collaboration with a wetlab!
immunologist to test epitope binding in HLA types prevalent in Denmark!



PANVAC is a cancer vaccine therapy delivered through two viral vectors--recombinant 
vaccinia and recombinant fowlpox--which are given sequentially. Both vectors contain 
transgenes for the tumor-associated antigens epithelial mucin 1 and carcinoembryonic 
antigen, which are altered or overexpressed in most carcinomas. The vectors also 
contain transgenes for three human T cell costimulatory molecules required to enhance 
immune response: B7.1, intracellular adhesion molecule-1 and leukocyte function-
associated antigen-3. PANVAC is injected subcutaneously and processed by the body's 
antigen-presenting cells. Preclinical studies have demonstrated the efficacy of 
PANVAC in inducing both carcinoembryonic antigen- and mucin 1-specific cytotoxic 
T lymphocyte responses in vitro and in murine models. Other strategies that enhance 
the immune response include the use of granulocyte-macrophage colony-stimulating 
factor and a prime-boost administration sequence. Clinical trials have demonstrated 
PANVAC's safety and its ability to induce antigen-specific T cell responses. Early 
clinical trials are evaluating PANVAC alone and in combination with conventional 
chemotherapy and/or radiation. Studies to date hold promise for the use of PANVAC as 
a means to stimulate the immune system against malignancies and to provide clinical 
benefit.!

http://clinicaltrials.gov/show/NCT00088660!



The objective of the first clinical testing of these peptides (ProVac-1,3,5) would 
be to render prostate cancer patients vaccinated with these peptides cancer-free. 
These are patients who have undergone the present standard of care for prostate 
cancer and these peptides are being tested for secondary prevention of prostate 
cancer recurrences. The next logical step for the clinical development of these 
peptide cancer vaccines would be the primary prevention of prostate cancer. 
Using our pipeline of patented products, our near term objective is to combine 
Capridine, the newly discovered and AVT-patented proprietary prostate-cancer-
targeted chemotherapeutic drug, with a peptide-based immunotherapeutic 
vaccine, to design a completely unique curative treatment regimen for prostate 
cancer.!

Scientists at AV Therapeutics believe that there are two problems which need to 
be solved. The first is that cancer antigens, in part, are self-aberrant proteins 
that evade the immune system and hence are unrecognized and not killed by 
the host’s immune system. The host’s immune system needs to be re-educated 
so that cancer cells can be recognized and killed. The second problem is the 
constant generation of random mutations in cellular proteins and the generation 
of a large number of ever changing antigenic epitopes. The Company’s 
proprietary vaccine technology overcomes both of these limitations by using 
therapeutic peptides that are mimics of the multivalent antigens.!

PROVAC – Prostate cancer vaccine!
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The major histocompatibility complex (MHC) region on the short arm of chromosome 6 harbors the largest
number of replicated associations across the human genome for a wide range of diseases, but the functional
basis for these associations is still poorly understood. One fundamental challenge in fine-mapping associa-
tions to functional alleles is the enormous sequence diversity and broad linkage disequilibrium of the MHC,
both of which hamper the cost-effective interrogation in large patient samples and the identification of causal
variants. In this review, we argue that there is now a valuable opportunity to leverage existing genome-wide
association study (GWAS) datasets for in-depth investigation to identify independent effects in the MHC.
Application of imputation to GWAS data facilitates comprehensive interrogation of the classical human
leukocyte antigen (HLA) loci. These datasets are, in many cases, sufficiently large to give investigators the
ability to disentangle effects at different loci. We also explain how querying variation at individual amino
acid positions for association can be powerful and expand traditional analyses that focus only on the clas-
sical HLA types.

INTRODUCTION

Across the entire genome, the major histocompatibility
complex (MHC) region stands out by virtue of harboring the
largest number of bona fide genetic associations for a range
of conditions. These not only include inflammatory, auto-
immune and infectious diseases but also different forms of
cancer, drug-induced hypersensitivity and, more recently,
neuropsychiatric disease. The earliest associations within the
MHC were identified in the 1970s, using serological reagents
and cell-based assays that measure different human leukocyte
antigens (HLAs) (1,2). These initial studies revealed large
effects that could be detected with relatively small sample
sizes. Decades later, despite the impressive cumulative list
of MHC associations, there has been a surprising lack of pro-
gress in pinpointing causal variants underlying these disease
associations.

The MHC is often regarded as one of the most complex
regions of the genome because of its enormous sequence

diversity, broad linkage disequilibrium (LD) and high gene
density (3–5). This complexity has severely hampered
efforts to study the region in detail. As a result of LD, multiple
nearby variants may have equivalent statistical evidence of as-
sociation, and thus it can be difficult to assign causality to a
specific variant (6). Inability to pin down a causal variant
limits the ability of investigators to elucidate the functional
mechanisms of validated associations and to understand
disease pathogenesis. Even larger sample sizes than were
required for their initial discovery will likely be needed to
reach sufficient power to tease apart the role of correlated var-
iants. The question remains to what extent imputation with
dense reference panels (like 1000 Genomes) or genotyping
with dense SNP arrays (like Immunochip) might help to
narrow associations with functional variation at known loci
(7,8). The MHC region provides a ripe opportunity to investi-
gate these specific issues.

In this review, we highlight the potential for fine-mapping
associations within the MHC. For these studies to be done
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Training set: Type 1 Diabetes Genetics Consortium!

HLA DR-DQ Haplotypes and Genotypes and Type 1
Diabetes Risk
Analysis of the Type 1 Diabetes Genetics Consortium
Families
Henry Erlich,1,2 Ana Maria Valdes,2 Janelle Noble,2 Joyce A. Carlson,3 Mike Varney,4

Pat Concannon,5 Josyf C. Mychaleckyj,5 John A. Todd,6 Persia Bonella,2 Anna Lisa Fear,2

Eva Lavant,3 Anthony Louey,4 and Priscilla Moonsamy1 for the Type 1 Diabetes Genetics Consortium

OBJECTIVE—The Type 1 Diabetes Genetics Consortium has
collected type 1 diabetic families worldwide for genetic analysis.
The major genetic determinants of type 1 diabetes are alleles at
the HLA-DRB1 and DQB1 loci, with both susceptible and protec-
tive DR-DQ haplotypes present in all human populations. The
aim of this study is to estimate the risk conferred by specific
DR-DQ haplotypes and genotypes.

RESEARCH DESIGN AND METHODS:—Six hundred and
seven Caucasian families and 38 Asian families were typed at
high resolution for the DRB1, DQA1, and DQB1 loci. The
association analysis was performed by comparing the frequency
of DR-DQ haplotypes among the chromosomes transmitted to an
affected child with the frequency of chromosomes not transmit-
ted to any affected child.

RESULTS—A number of susceptible, neutral, and protective
DR-DQ haplotypes have been identified, and a statistically signif-
icant hierarchy of type 1 diabetes risk has been established. The
most susceptible haplotypes are the DRB1*0301-DQA1*0501-
DQB1*0201 (odds ratio [OR] 3.64) and the DRB1*0405-
DQA1*0301-DQB1*0302, DRB1*0401-DQA1*0301-DQB*0302, and
DRB1*0402-DQA1*0301-DQB1*0302 haplotypes (ORs 11.37, 8.39,
and 3.63), followed by the DRB1*0404-DQA1*0301-DQB1*0302
(OR 1.59) and the DRB1*0801-DQB1*0401-DQB1*0402 (OR 1.25)
haplotypes. The most protective haplotypes are DRB1*1501-
DQA1*0102-DQB1*0602 (OR 0.03), DRB1*1401-DQA1*0101-
DQB1*0503 (OR 0.02), and DRB1*0701-DQA1*0201-DQB1*0303
(OR 0.02).

CONCLUSIONS—Specific combinations of alleles at the DRB1,

DQA1, and DQB1 loci determine the extent of haplotypic risk.
The comparison of closely related DR-DQ haplotype pairs with
different type 1 diabetes risks allowed identification of specific
amino acid positions critical in determining disease susceptibil-
ity. These data also indicate that the risk associated with specific
HLA haplotypes can be influenced by the genotype context and
that the trans-complementing heterodimer encoded by
DQA1*0501 and DQB1*0302 confers very high risk. Diabetes 57:
1084–1092, 2008

Type 1 diabetes is a common autoimmune disor-
der resulting from the immunological destruc-
tion of the insulin-producing !-cells of the
pancreas, leading to dysregulation of glucose

metabolism. Type 1 diabetes clusters in families with an
overall genetic risk ratio ("-s) of #15 (1). The concor-
dance of type 1 diabetes among monozygotic and dizygotic
twins argues for a strong genetic determinant of disease
and a significant environmental factor required to elicit the
disease in genetically predisposed individuals. Approxi-
mately 40–50% of the familial clustering of type 1 diabetes
can be attributed to allelic variation in the HLA region, and
a recent linkage analysis reported a logarithm of odds
score of 116 (genome-wide P value $1.0 % 10&4) for this
region (2). A large number of studies have demonstrated
that specific alleles at the DRB1, DQA1, and DQB1 loci are
strongly associated with type 1 diabetes (3–7). However,
allelic variation at these loci cannot account fully for the
pattern of HLA haplotype sharing among affected sibpairs
(8). Moreover, the association analysis of other HLA loci
(class I and DPB1) and other polymorphisms within the
HLA region has revealed the presence of additional type 1
diabetes susceptibility loci in this region (9–19). To aid in
the search for additional type 1 diabetes genes within and
outside the HLA region, an international collaboration (the
Type 1 Diabetes Genetics Consortium) has collected and is
continuing to collect a large number of type 1 diabetic
families (multiplex and simplex) from various populations
(20). These samples were genotyped at high resolution for
all classical HLA loci at three genotyping centers. The
large sample size of this study allows stratification analysis
for haplotypes and genotypes, allowing, in turn, the inves-
tigation of DR-DQ genotype context effects suggested by
previous smaller studies (4,21,22). This sample size also
allows statistically significant estimates of risk for individ-
ual DR-DQ haplotypes and the establishment of a risk
hierarchy ranging from highly predisposing to highly pro-
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University Hospital, Malmö, Sweden; the 4Victorian Transplantation and
Immunogenetics Service, Australian Red Cross Blood Service, Melbourne,
Australia; the 5Center for Public Health Genomics, University of Virginia,
Charlottesville, Virginia; and the 6Juvenile Diabetes Research Foundation/
Wellcome Trust Diabetes and Inflammation Laboratory, Department of Med-
ical Genetics, Cambridge Institute for Medical Research, University of
Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, U.K.

Address correspondence and reprint requests to Henry A. Erlich, PhD,
Roche Molecular Systems, 1145 Atlantic Ave., Alameda, CA 94501. E-mail:
Henry.Erlich@Roche.com.

Received for publication 18 September 2007 and accepted in revised form
14 January 2008.

Published ahead of print at http://diabetes.diabetesjournals.org on 5 Febru-
ary 2008. DOI: 10.2337/db07-1331.

Additional information for this article can be found in an online appendix at
http://dx.doi.org/10.2337/db07-1331.

AFBAC, affected family-based control; SNP, single nucleotide polymor-
phism.

© 2008 by the American Diabetes Association.
The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked “advertisement” in accordance
with 18 U.S.C. Section 1734 solely to indicate this fact.

ORIGINAL ARTICLE

1084 DIABETES, VOL. 57, APRIL 2008



CasePresent$ CaseAbsent$ ControlPresent$ ControlAbsent$ OddsRa9oControl$ OddsRa9oCase$ chi$square$control$ chi$square$case$ OddsRa9o2$ OR$95%$CI$Z$ OR$95%$CI+$ SE$ pZvalue$

92$ 2540$ 115$ 6878$ 0.461616749$ 2.166299213$ 31.13188175$ 31.13188175$ 2.166299213$ 1.640682317$ 2.860302297$ 0.141789666$ 2.41079EZ08$

115$ 2496$ 170$ 6776$ 0.544530568$ 1.836444193$ 25.12017138$ 25.12017138$ 1.836444193$ 1.443070385$ 2.337047833$ 0.122988722$ 5.38664EZ07$

375$ 2024$ 1237$ 4868$ 1.37150808$ 0.729124396$ 24.03793913$ 24.03793913$ 0.729124396$ 0.642397512$ 0.827560195$ 0.0646109$ 9.44561EZ07$

111$ 2500$ 168$ 6774$ 0.558574518$ 1.790271429$ 22.44027341$ 22.44027341$ 1.790271429$ 1.402530419$ 2.285204823$ 0.124535189$ 2.1678EZ06$

387$ 2016$ 1251$ 4856$ 1.342017547$ 0.74514674$ 21.28270785$ 21.28270785$ 0.74514674$ 0.657408349$ 0.84459512$ 0.06391637$ 3.9629EZ06$

113$ 2496$ 177$ 6754$ 0.578866408$ 1.727514305$ 20.31689966$ 20.31689966$ 1.727514305$ 1.358321534$ 2.197052322$ 0.122670194$ 6.56184EZ06$

325$ 2096$ 1066$ 5114$ 1.344325381$ 0.743867529$ 18.77282069$ 18.77282069$ 0.743867529$ 0.650453023$ 0.850698055$ 0.068466417$ 1.47251EZ05$

374$ 2018$ 1197$ 4898$ 1.318636003$ 0.758359394$ 18.2540235$ 18.2540235$ 0.758359394$ 0.667807721$ 0.861189779$ 0.064876219$ 1.93317EZ05$

This method allowed us to do HLA typing of over 45,000 patient case!
and control SNP arrays!



Using computation and imputation!
to drive experiments and further!
directed sequencing of specific regions!
-- Sandor awesome wet lab guy does experiments!!!
(Sandor doesn’t use the internet much so I couldn’t find a !
nice picture of him !)!



Located in the HLA class 1 region at 6p21.33 near psoriasis susceptibility region 1, 
rs6457327 was inversely associated with risk of FL (P-value = 4.7 × 10−11) (8). In the HLA 
class II region at 6p21.32, two single nucleotide polymorphisms (SNPs), rs10484561 and 
rs7755224, were associated with twofold increased risks of FL (P-values = 1.12 × 10−29 and 
2.0 × 10−19, respectively) (7). rs10484561 and rs7755224 are in total linkage disequilibrium 
(LD) and are located 29 and 16 kb centromeric of HLA-DQB1, respectively. On the basis of 
a tag SNP analysis, we inferred that rs10484561 may be part of a high-risk extended 
haplotype, DRB1*01:01-DQA1*01:01-DQB1*05:01 (7). Another class II locus in the HLA-
DQB1 region, rs2647012, was inversely associated with FL risk after adjusting for 
rs10484561 [Odds ratio (OR) = 0.70, P-value = 4 × 10−12] (9).!
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          N Observed Expected (O-E)^2/E (O-E)^2/V
no HLA_B_15=0 432      432    408.7      1.32      8.31
HLA_B_15=1  56               56     79.3      6.82      8.31
     Chisq= 8.3  on 1 degrees of freedom, p= 0.00394 



To conclude, for any statement where A implies B, then not B always implies not A. 
Proving or disproving either one of these statements automatically proves or disproves 
the other. They are fully equivalent.!

Food for thought: How to use the contrapositive to prove/disprove!
drug/food safety!





Correlation with !
tAI in cisplatin!
treated TNBC cohort!
!



OR 

+

+

•  Telomeric loss 

•  Duplication  

•  LOH with normal 
copy number 

•  Telomeric loss 

•  Duplication  

•  LOH with normal 
copy number 

•  No LOH 

•  Normal 2 copies 

•  No LOH 

•  Normal 2 copies 

After mitosis!



Formation of Quadriradials II 

OR 

LOH with 
partial deletion 

LOH with 
deletion 

Normal Dead or soon 
to be dead 



We analyzed the frequency of AI for each SNP as a function of distance from centromere:   
high frequency of telomeric loss 

TNBC Cisplatin Ovarian Cancer 
Short arms Long arms Short arms Long arms 





Increasing sensitivity Increasing sensitivity 

The number of regions of telomeric AI (≥ 19 Mb) was highly correlated !
with cisplatin sensitivity in TNBC cell lines. !



K-M using NtAI, 19 ≥ 10 based on best 
sensitivity for pCR in TNBC trial 

We next evaluated a public SNP array dataset of primary ovarian cancers!
 treated with cisplatin (plus Taxol) with clinical outcome data!
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Expanding the analysis from triple negative !
breast cancer to multiple diverse cancer types (n=1,445)!
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Introduction
Localised renal-cell carcinoma often recurs after treat-
ment, usually leading to incurable disease.1 The risk of 
recurrence is highly associated with clinical and patho-
logical factors, such as TNM stage, performance status, 
and Fuhrman grade. However, outcomes for patients 
with similar clinical and pathological features still differ 
significantly. Improved predictors of recurrence of renal-
cell carcinoma are needed.2,3

Although several molecular markers of disease pro-
gression have been proposed, no biomarkers of recur-
rence risk have been well established. Germline DNA 
polymorphisms are particularly attractive biomarkers 
since they are present at the time of diagnosis and are 
not affected by the state of the disease or the timing of 
diagnosis. Single nucleotide polymorphisms (SNPs) are 
inherited germline DNA sequence variants. These 
variants occur throughout the entire genome, in both 

coding and non-coding regions, and can modify 
biological pathways.4

A genome-wide association study identified SNPs in 
EPAS1 (also called HIF2a) and a complex genetic 
architecture that were associated with risk for renal-cell 
carcinoma.5–8 A follow-up study reported that a variant in 
11q13.3 re modulates the binding and function of hypoxia 
inducible factor (HIF) at a previously undiscovered tran-
scriptional enhancer of CCND1 (which codes for cyclin 
D1). The protective haplotype impairs binding of HIF-2, 
resulting in an allelic imbalance of cyclin D1 expression.9 
However, to our knowledge, no large studies have 
assessed SNPs and renal-cell carcinoma recurrence and 
survival after resection. Positive associations exist 
between some germline polymorph isms and outcome 
for prostate cancer, breast cancer, lymphoid neoplasm, 
and nasopharyngeal cancer (after initial treatment).10–13 
We assessed the association be tween SNPs in genes 

Single nucleotide polymorphisms and risk of recurrence of 
renal-cell carcinoma: a cohort study
Fabio A B Schutz, Mark M Pomerantz*, Kathryn P Gray*, Michael B Atkins, Jonathan E Rosenberg, Michelle S Hirsch, David F McDermott, 
Megan E Lampron, Gwo-Shu Mary Lee, Sabina Signoretti, Philip W Kantoff, Matthew L Freedman, Toni K Choueiri

Summary
Background Germline genetic polymorphisms might affect the risk of recurrence in patients with localised renal-cell 
carcinoma. We investigated the association between genetic polymorphisms and recurrence of renal-cell carcinoma.

Methods We analysed germline DNA samples extracted from patients with localised renal-cell carcinoma treated at 
the Dana-Farber/Harvard Cancer Center (Boston, MA, USA). We selected a discovery cohort from a prospective 
database at the Dana-Farber/Harvard Cancer Center and selected a validation cohort from department records at the 
Brigham and Women’s Hospital (Boston, MA, USA). We validated the findings from the discovery cohort in the 
validation cohort. We genotyped 70 genes involved in the pathogenesis of renal-cell carcinoma (including the VHL/
HIF/VEGF and PI3K/AKT/mTOR pathways, and genes involved in immune regulation and metabolism) for single 
nucleotide polymorphisms. We assessed the association between genotype and recurrence-free survival, adjusted for 
baseline characteristics, with the Cox proportional hazards model, the Kaplan-Meier method, and the log-rank test. 
We used a false discovery rate q value to adjust for multiple comparisons.

Findings We included 554 patients (403 in the discovery cohort and 151 in the validation cohort). We successfully 
genotyped 290 single nucleotide polymorphisms in the discovery cohort, but excluded five because they did not have 
a variant group for comparison. The polymorphism rs11762213, which causes a synonymous aminoacid change in 
MET (144G→A, located in exon 2), was associated with recurrence-free survival. Patients with one or two copies of the 
minor (risk) allele had an increased risk of recurrence or death (hazard ratio [HR] 1·86, 95% CI 1·17–2·95; p=0·0084) 
in multivariate analysis. Median recurrence-free survival for carriers of the risk allele was 19 months (95% CI 
9–not reached) versus 50 months (95% CI 37–75) for patients without the risk allele. In the validation cohort the HR 
was 2·45 (95% CI 1·01–5·95; p=0·048). 

Interpretation Patients with localised renal-cell carcinoma and the MET polymorphism rs11762213 might have an 
increased risk of recurrence after nephrectomy. If these results are further validated in a similar population, they 
could be incorporated into future prognostic instruments, potentially aiding the design of adjuvant clinical trials of 
MET inhibitors and management of renal-cell carcinoma.
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Introduction
Localised renal-cell carcinoma often recurs after treat-
ment, usually leading to incurable disease.1 The risk of 
recurrence is highly associated with clinical and patho-
logical factors, such as TNM stage, performance status, 
and Fuhrman grade. However, outcomes for patients 
with similar clinical and pathological features still differ 
significantly. Improved predictors of recurrence of renal-
cell carcinoma are needed.2,3

Although several molecular markers of disease pro-
gression have been proposed, no biomarkers of recur-
rence risk have been well established. Germline DNA 
polymorphisms are particularly attractive biomarkers 
since they are present at the time of diagnosis and are 
not affected by the state of the disease or the timing of 
diagnosis. Single nucleotide polymorphisms (SNPs) are 
inherited germline DNA sequence variants. These 
variants occur throughout the entire genome, in both 

coding and non-coding regions, and can modify 
biological pathways.4

A genome-wide association study identified SNPs in 
EPAS1 (also called HIF2a) and a complex genetic 
architecture that were associated with risk for renal-cell 
carcinoma.5–8 A follow-up study reported that a variant in 
11q13.3 re modulates the binding and function of hypoxia 
inducible factor (HIF) at a previously undiscovered tran-
scriptional enhancer of CCND1 (which codes for cyclin 
D1). The protective haplotype impairs binding of HIF-2, 
resulting in an allelic imbalance of cyclin D1 expression.9 
However, to our knowledge, no large studies have 
assessed SNPs and renal-cell carcinoma recurrence and 
survival after resection. Positive associations exist 
between some germline polymorph isms and outcome 
for prostate cancer, breast cancer, lymphoid neoplasm, 
and nasopharyngeal cancer (after initial treatment).10–13 
We assessed the association be tween SNPs in genes 
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Summary
Background Germline genetic polymorphisms might affect the risk of recurrence in patients with localised renal-cell 
carcinoma. We investigated the association between genetic polymorphisms and recurrence of renal-cell carcinoma.

Methods We analysed germline DNA samples extracted from patients with localised renal-cell carcinoma treated at 
the Dana-Farber/Harvard Cancer Center (Boston, MA, USA). We selected a discovery cohort from a prospective 
database at the Dana-Farber/Harvard Cancer Center and selected a validation cohort from department records at the 
Brigham and Women’s Hospital (Boston, MA, USA). We validated the findings from the discovery cohort in the 
validation cohort. We genotyped 70 genes involved in the pathogenesis of renal-cell carcinoma (including the VHL/
HIF/VEGF and PI3K/AKT/mTOR pathways, and genes involved in immune regulation and metabolism) for single 
nucleotide polymorphisms. We assessed the association between genotype and recurrence-free survival, adjusted for 
baseline characteristics, with the Cox proportional hazards model, the Kaplan-Meier method, and the log-rank test. 
We used a false discovery rate q value to adjust for multiple comparisons.

Findings We included 554 patients (403 in the discovery cohort and 151 in the validation cohort). We successfully 
genotyped 290 single nucleotide polymorphisms in the discovery cohort, but excluded five because they did not have 
a variant group for comparison. The polymorphism rs11762213, which causes a synonymous aminoacid change in 
MET (144G→A, located in exon 2), was associated with recurrence-free survival. Patients with one or two copies of the 
minor (risk) allele had an increased risk of recurrence or death (hazard ratio [HR] 1·86, 95% CI 1·17–2·95; p=0·0084) 
in multivariate analysis. Median recurrence-free survival for carriers of the risk allele was 19 months (95% CI 
9–not reached) versus 50 months (95% CI 37–75) for patients without the risk allele. In the validation cohort the HR 
was 2·45 (95% CI 1·01–5·95; p=0·048). 

Interpretation Patients with localised renal-cell carcinoma and the MET polymorphism rs11762213 might have an 
increased risk of recurrence after nephrectomy. If these results are further validated in a similar population, they 
could be incorporated into future prognostic instruments, potentially aiding the design of adjuvant clinical trials of 
MET inhibitors and management of renal-cell carcinoma.
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interspersed among plates for quality control. The 
concord ance of the duplicates was 100%. 

We only analysed SNPs that had passed quality checks. 
We usually excluded those with a genotyping success rate 
of less than 85% or with a significant deviation from 
Hardy-Weinberg equilibrium. In the discovery cohort, 
290 of 368 SNPs were successfully genotyped with an 
average rate of 97%.

The primary analysis endpoint was recurrence-free 
survival, defined as time from curative surgery to recur-
rence or death or censored at the last date at which the 
patient was known to be alive. Other endpoints were 
recurrence-free interval, defined as time from surgery to 
recurrence or censored at death before recurrence or last 
follow-up, and time from surgery to all-cause death or 
overall survival.

Statistical analysis
For the discovery cohort, we treated each SNP as a 
categorical variable—either a common homozygote, a 

rare homozygote, or a heterozygote. Rare homozygotes 
were combined with heterozygotes if the rare homozygote 
count was very low (using a cutoff of ten or frequency of 
2·5% for a variant group) to ensure that the analysis 
(regression model) could properly estimate the coefficient 
for the association. We tested the association be tween 
recurrence-free survival and genotype with the log-rank 
test. We used the false-discovery rate measure q value 
with a cutoff less than 0·1 to adjust for multiple 
comparisons.21 The q value represents the expected 
proportion of false-positive results when testing for 
significance. We used a false discovery rate threshold of 
0·1 on the basis of the REMARK guidelines,22 which state 
that a very stringent criterion needs to be used if any 
biomarkers are to hold up in future studies.

Once we identified a polymorphism on the basis of 
log-rank test and false-discovery rate, we estimated the 
distribution of recurrence-free survival stratified by 
allelic status by the Kaplan-Meier method. We tested the 
association between the polymorphism and endpoints 

Discovery cohort Validation cohort

Coefficient estimate 
(SE)

z HR (95% CI) p value Coefficient estimate 
(SE)

z HR (95% CI) p value

ECOG PS (≥1 vs 0*) 0·95 (0·16) 5·80 2·60 (1·88–3·59) <0·0001 0·47 (0·30) 1·57 1·60 (0·89–2·88) 0·12

Tumour size (cm) 0·15 (0·02) 9·07 1·17 (1·13–1·21) <0·0001 0·03 (0·05) 0·55 1·03 (0·93–1·13) 0·59

Clinical stage (III or IV vs I or II*) 1·43 (0·16) 9·06 4·20 (3·08–5·72) <0·0001 1·34 (0·30) 4·45 3·83 (2·12–6·93) <0·0001

Fuhrman grade (3 or 4 vs 1 or 2*) 1·23 (0·17) 7·32 3·43 (2·47–4·77) <0·0001 0·73 (0·31) 2·39 2·08 (1·14–3·80) 0·017

Histology (clear cell vs non-clear cell*) 0·61 (0·20) 3·00 1·84 (1·24–2·74) 0·0027 0·21 (0·36) 0·58 1·23 (0·61–2·49) 0·56

ECOG PS=Eastern Cooperative Oncology Group performance status. HR=hazard ratio. *Reference group.

Table 2: Recurrence-free survival by baseline characteristics

Gene Number 
assessable*

Minor allele 
frequency (%)

Homozygous 
(%)

Heterozygous 
(%)

Wild-type (%) p value for 
HWE

p value for recurrence-free 
survival†

q value

Discovery cohort

rs11762213 (G→A) MET 393 5·3% 1·3% 8·1% 90·6% 0·0028 9·40×10%⁵ 0·027

rs3820546 (A→G) SLC2A1 387 46·8% 23·8% 46·0% 30·2% 0·15 0·0019 0·27

rs38846 (T→C) MET 389 18·6% 3·9% 29·6% 66·6% 0·62 0·0093 0·73

rs1531290 (A→G) KDR 397 46·3% 22·4% 47·9% 29·7% 0·48 0·01 0·73

rs2236416 (A→G) MMP9 398 13·8% 2·5% 22·6% 74·9% 0·29 0·023 0·89

rs38845 (G→A) MET 390 45·5% 19·7% 51·5% 28·7% 0·48 0·029 0·89

rs1326889 (T→C) AGT 362 48·3% 25·4% 45·9% 28·7% 0·12 0·031 0·89

rs3093662 (A→G) TNF 386 8·2% 0·5% 15·3% 84·2% 1·00 0·032 0·89

rs361525 (G→A) TNF 398 4·8% 0·3% 9·0% 90·7% 0·60 0·033 0·89

rs10267099 (A→G) ABCB1 347 23·3% 6·3% 34·0% 59·7% 0·37 0·034 0·89

rs779805 (A→G) VHL 399 32·3% 9·8% 45·1% 45·1% 0·57 0·035 0·89

rs10271561 (T→C) MET 391 10·4% 0·8% 19·2% 80·1% 0·78 0·037 0·89

Validation cohort

rs11762213 (G→A) MET 148 5·4% 0% 10·8% 89·2% 1·00 0·042 ··

rs3820546 (T→C) SLC2A1 148 47·3% 21·6% 51·4% 27·0% 0·87 0·064 ··

p value for HWE represents the exact test for HWE. Data are for the top 12 single nucleotide polymorphisms associated with recurrence-free survival in the discovery cohort and the top two in the validation cohort. 
HWE=Hardy-Weinberg equilibrium. *Patients whose genotyping had failed were excluded from the analysis. †For test of association between recurrence-free survival and single nucleotide polymorphism.

Table 3: Single nucleotide polymorphisms associated with recurrence-free survival
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